
Vigilia: Securing Smart Home Edge Computing

Rahmadi Trimananda

University of California, Irvine

rtrimana@uci.edu

Bin Xu

University of California, Irvine

xub3@uci.edu

Ali Younis

University of California, Irvine

ayounis@uci.edu

Brian Demsky

University of California, Irvine

bdemsky@uci.edu

Bojun Wang

University of California, Irvine

bojunw2@uci.edu

Guoqing Xu

University of California, Los Angeles

harryxu@cs.ucla.edu

Abstract—Smart home IoT devices are becoming increas-
ingly popular. Modern programmable smart home hubs such
as SmartThings enable homeowners to manage devices in
sophisticated ways to save energy, improve security, and pro-
vide conveniences. Unfortunately, many smart home systems
contain vulnerabilities, potentially impacting home security and
privacy. This paper presents Vigilia, a system that shrinks the
attack surface of smart home IoT systems by restricting the
network access of devices. As existing smart home systems are
closed, we have created an open implementation of a similar
programming and configuration model in Vigilia and extended
the execution environment to maximally restrict communica-
tions by instantiating device-based network permissions. We
have implemented and compared Vigilia with forefront IoT-
defense systems; our results demonstrate that Vigilia outper-
forms these systems and incurs negligible overhead.

Keywords-smart home; security; privacy; programming
model;

I. INTRODUCTION

Smart homes enable appliances to be controlled locally

via the network and typically enable more sophisticated

control systems [67]. Companies have launched a wide range

of smart-home devices, many of which have serious security

issues. A study reported vulnerabilities in 70% of the devices

investigated [17]. Bugs have been found in a wide range

of devices including routers [69], [71], smartcams [58],

[14], [73], baby monitors [56], [60], [31], smart hubs [72],

sprinklers [6], smart plugs [35], and smart fridges [1]. The

problems in these systems are more basic than missing buffer

checks—some of these devices have unsecured embedded

web servers that allow anyone to update the firmware, have

default passwords, use insecure authentication, or use clear

text communications. To demonstrate the severity of the

problem, we assigned public IPs to our webcams (§VII-C).

All of them were hacked within 15 minutes!

Part of the promise of smart home systems is the ability

of collections of devices to work together to be smarter

and more capable than individual devices. Achieving this

requires integration between different devices, which may

come from different manufacturers with entirely different

software stacks, e.g., Nest Thermostat, Wemo Switch, etc.

Smart home hubs support integration between these dis-

parate devices, but existing hubs including SmartThings have

serious security weaknesses.

SmartThings: SmartThings is a smart home environ-

ment created by Samsung [61]. This environment allows

smart home devices (e.g., SmartThings and third-party de-

vices) to be connected to a home network, monitored, and

controlled through the SmartThings phone app. Among these

devices, Zigbee or Z-Wave devices are connected to the

LAN via the SmartThings smart hub, while WiFi devices

are directly connected to the LAN.

The SmartThings environment also allows the user to

create smart home apps (SmartApps) to manage connected

devices to perform specific functionality. For example, a

smart switch app that manages motion sensors and switches

could use the sensors to detect motion as a trigger to turn

on a switch. SmartApps communicate with devices through

device handlers. A device handler exposes device capabil-

ities that allow the SmartApp to access device features,

e.g., switch.on() and switch.off() for a switch. Most

SmartApps and device handlers run on the SmartThings

cloud and have the local smart hubs relay commands to

the physical devices. SmartApps are written in Groovy,

a managed programming language running on top of the

JVM [27].

The SmartThings environment has the following weak-

nesses:

(1) Device Vulnerabilities: Many IoT devices connect

directly to the home Internet connection and communicate

with the hub via the LAN or the cloud. Many of these

devices either intentionally trust communication from the

local area network (e.g., Wemo, LiFX), use inadequate

authentication mechanisms (e.g., a short PIN in the case of

D-Link), or have backdoors (e.g., Blossom sprinkler) that

make them vulnerable to attack.

(2) Trusted Codebases with Bad Security Records (e.g.,

JVMs): The SmartThings system executes device drivers

and applications on a JVM and relies on the JVM to provide

safety. Bugs in the JVM could potentially allow applications

to subvert the capability system and access arbitrary devices.

(3) Excessive Access Granted to Cloud Servers: The

SmartThings system executes most applications and device

handlers on their cloud servers and uses the hub to relay



commands to the local devices. The hub punches through

the home firewall to give the SmartThings cloud servers

arbitrary access to communicate with any local device. Note

that while compromised firmware updates could concep-

tually be used to obtain similar access, the scenarios are

fundamentally different because firmware updates are often

signed. Thus, with appropriate key protection mechanisms,

they can be made difficult for attackers to compromise.

(4) Excessive Access Granted to Device Handlers or

SmartApps: SmartThings device handlers have the ability

to capture all SSDP network traffic to the hub [37], commu-

nicate with arbitrary IP addresses and ports by reconfiguring

the device’s network address, and send arbitrary commands

to arbitrary Zigbee devices [20].

When a homeowner purchases a new IoT device, they

first make it available to their SmartThings hub. SmartThings

provides drivers for a wide range of third party devices; users

can also write their own drivers or import third-party driver

code. Some popular devices such as the Nest thermostat can

only be integrated into SmartThings via third-party drivers

that are not subject to any code review process.

When a SmartApp is first installed, the user configures it

by selecting the devices to be monitored and controlled. This

process grants the SmartApp the capabilities to access those

devices. While the SmartThings capability system appears

at first glance to provide strong security assurances, it can

be easily subverted. For example, a SmartApp can conspire

with a device handler to subscribe to all SSDP traffic to the

hub, open arbitrary connections to cloud servers, or obtain

arbitrary access to LAN and Zigbee devices.

Our initial goal was to secure a popular real-world sys-

tem such as SmartThings. However, SmartThings is closed

source—we could not directly enhance it as we do not have

access to its source code. As a result, we had to develop

a new distributed IoT infrastructure that closely follows the

programming and computation model of SmartThings. We

demonstrate the viability of our approach by implementing

Vigilia on top of this new system. Our idea is generally

applicable to SmartThings and any other smart home IoT

infrastructure that uses similar models.

Vigilia Approach: We developed Vigilia, a new cross-

layer technique to harden smart home systems. First, Vigilia

restricts network access—Vigilia uses a similar program-

ming model as SmartThings but leverages the configuration

information that is already available to also restrict network

access. Vigilia makes the network primarily responsible for

the security of IoT devices—Vigilia implements a default

deny policy for all IoT devices and smart home applications.

Access is only granted when user has explicitly configured

a smart home application to use a specific device. A key

advantage of this approach is that it becomes less critical

that end users keep every IoT device fully patched. At the

same time, by leveraging the configuration information that

is already present, Vigilia’s security mechanisms never get

in the way of legitimate computations.

Second, Vigilia provides more fine-grained access control

to specific devices. In Vigilia, a smart home application

controls a specific device via a device driver. The interaction

between the smart home application and the device driver

occurs through remote method invocation (RMI). Device

features are exposed as API methods in the device’s driver

class. This is implemented as capability-based RMI that only

allows a limited set of API methods to be called depending

on the configuration (§III). Thus, this mechanism provides

more fine-grained access control to specific devices on top

of the network policy restrictions.

Vigilia implements a lightweight approach to securing

smart home systems at the network and operating system

layers. This work leverages the observation that most IoT

devices are not general-purpose; they do not need to commu-

nicate with arbitrary machines and thus do not require full

network access. By enforcing access at the network level,

Vigilia shifts the primary burden for security from individual

devices to the network. The net effect is that system security

no longer relies on every device manufacturer securing their

devices and end users keeping devices patched—helping

users secure IoT devices when manufacturers do not.

This paper makes the following contributions:

• Automatic Extraction of Enforcement of Security

Policies: It presents techniques that automatically ex-

tract and enforce fine-grained security policies on ap-

plications written using a programming model that is

similar to SmartThings.

• Secure Enforcement Mechanism: It uses a set of

router-based techniques including modifications to the

WiFi stack that ensure that compromised devices cannot

subvert the enforcement mechanisms by masquerading

as the router or another device.

• No Spurious Failures: It statically checks that pro-

grams will respect the policies at runtime and thus will

never spuriously fail due to the security enforcement

mechanisms.

• Implementation: It provides an open implementation

of a smart home programming model that is

similar to mainstream (close) platforms. We

have made this implementation available at

http://plrg.eecs.uci.edu/vigilia/.

• Evaluation: We have evaluated Vigilia on four smart

home applications that control commercially avail-

able IoT devices. Our results demonstrate that Vigilia,

among existing commercial and research systems, is

the best at protecting these applications from various

attacks with only minimal overhead.

II. THREAT MODEL AND GUARANTEES

Vigilia protects IoT devices from attacks resulting from

overprivileged network access. We use the following threat







@config Set<MoistureSensor> moisturesensors

in the IrrigationController application class. This

declares that the application has the abstract permission that

allows it to talk to moisture sensors at runtime. The Vigilia

programming model uses annotations either in the code

(Java) or in a separate file (C++) to allow the developer to

express this information.

In the above example, the developer does not need to

worry about how to create the set object and the contained

MoistureSensor objects in the program as these objects

are created by the runtime system. For example, if the end

user configures two moisture sensors for the application,

then the Vigilia runtime would create two MoistureSensor

objects and insert both objects into the moisturesensors

set. When the program is executed, the Vigilia runtime

system initializes this set with references to the appropriate

sensor objects. Vigilia components such as applications and

device drivers run in separate processes (i.e., JVM/binary).

Since communication between components is implemented

via RMI, a reference from the moisturesensors set can be

used to directly communicate with the sensor. Components

in Vigilia can only communicate with other components that

are specified by this set-based model.

Application Installation: During the installation pro-

cess, the end user configures the application for their home.

This configuration process is not unique to Vigilia, most

smart home systems include a similar process in which the

end user must specify which devices should be controlled

and how they should be. Moreover, the Vigilia installation

process for an application is similar to SmartThings. The

Vigilia installer asks the end user to configure the concrete

device instances to be used by an application. For example, a

sprinkler controller may ask which moisture sensors should

be used to monitor soil moisture. The end user specifies

which specific moisture sensors the application should use

by defining the devices that comprise the set of moisture sen-

sors. Finally, the Vigilia installer uses abstract permissions

and user configuration to generate concrete permissions.

Abstract permissions are generic for the application, while

concrete permissions are specific to installations and grant

access to physical devices.

Vigilia extends the set-based model with relations, speci-

fying relations between devices and communicating config-

uration information. For our irrigation example, the appli-

cation must know which sprinklers are located near which

moisture sensors. During installation, the user provides this

information in relations as it is specific to their installation.

Line 6 of Figure 3 declares the sensortosprinklers

relation that maps moisture sensors to the nearby sprinklers.

Similar to sets, relation objects are also constructed by the

runtime system.

Communication: Line 8 of Figure 3 declares a set

of gateways for smartphones. Devices like tablets/smart-

phones/laptops can be used to provide a user interface,

1 class SpruceSensor : public Device ,
2 public MoistureSensor {
3 private:
4 Set <ZigbeeAddress*> sprucesensor;
5 Set <DeviceAddress*> zigbeegateway;
6 double moisture;
7 double temp;
8 public:
9 void init();

10 double getMoisture ();
11 double getTemperature ();
12 }

Figure 4. Example device driver header in C++.

through which users can input application parameters. Fi-

nally, Line 9 declares a set of addresses of cloud-based

servers that provide weather forecast information. Vigilia

uses an oblivious cloud-based key-value store to provide

secure storage and communication even in the presence of

malicious cloud servers.

Device Drivers: Figure 4 presents a device driver class

declaration in C++ for the moisture sensor used by our

irrigation example. Our irrigation example uses a Spruce

moisture sensor [63], which is a Zigbee-based wireless

sensor. To communicate with the sensor, the device driver

must send packets to the sensor via a Zigbee gateway. Thus

the driver needs two addresses: (1) the IP address for the

Zigbee gateway and (2) the Zigbee network address for the

Spruce sensor.

Device drivers use the same set-based mechanism to ob-

tain direct access to network-based devices. The installation

process stores the system configuration parameterized by the

devices’ MAC addresses, and the Vigilia runtime maps the

MAC addresses to the corresponding IP addresses. Network

access is only permitted via runtime provided IP address/port

pairs, and thus the Vigilia runtime knows which devices a

driver may communicate with. The Vigilia runtime uses this

information to configure the routing policies. Device drivers

may declare a set of public methods such as getMoisture

for the application to get/set information from/to the device.

V. VIGILIA SECURITY MECHANISMS

We next discuss the security mechanisms Vigilia imple-

ments for the SmartThings’ programming model.

Checking: One challenge is how to statically eliminate

permission bugs, in which an application accidentally ex-

ceeds its declared permissions and thus fails at runtime when

the Vigilia runtime enforcement framework blocks the illegal

access. The Vigilia static checking framework is designed to

help honest developers ensure that their applications never

fail at runtime because of Vigilia’s runtime enforcement

framework. It is important to note that Vigilia does not rely

on the static checks for security—applications that attempt to

violate their permissions will be blocked by runtime checks.

The static checker needs to notify the developer of any

network accesses that are doomed to be blocked by runtime



checks. For example, an application could potentially violate

its permissions if it were to obtain a reference to a device

object from some other component and then attempt to

use that reference to access the underlying device. Such

an access would fail at runtime and potentially cause the

application to crash.

Vigilia supports both Java and C++. One goal of Vigilia

is to make it easy to support new languages and thus we

minimize the dependence on specialized compiler passes

for static checking. To the degree possible Vigilia uses

the existing language type system to check for permission

violations. Vigilia implements these checks via the Vigilia

RMI compiler. The Vigilia RMI compiler uses the declared

types to ensure that the existing language type system will

catch any accidental sharing of references to device objects

by an application.

SmartThings applications have full Internet access. A

malicious app can easily leak private information. Internet

access may also provide a conduit to attack benign applica-

tions. On the other hand, some functionality requires Internet

access to implement. Thus, Vigilia supports managed access

to TCP/IP sockets. This ensures that Vigilia is aware of any

potential TCP/IP accesses. If a program were to attempt

other accesses, they would be blocked by the Vigilia en-

forcement framework. The Java implementation of Vigilia’s

checker uses a type checker to ensure that Java Vigilia

applications do not attempt to directly use raw TCP/IP

sockets for communication. The C++ implementation does

not implement this particular check—note that this does

not impact security, but developers could potentially attempt

direct network accesses that would be blocked at runtime.

Vigilia Installer: The Vigilia installer manages the

installation of new devices and smart home applications. A

major issue with the SmartThings system is that it trusts

that devices on the home network are not malicious. Under

SmartThings, a single malicious device on the home network

has full network access to all other devices. Vigilia fully

isolates each IoT device from every other device on the

network, permitting communication only when applications

are explicitly configured to use a device during the installa-

tion process. When a new device is installed, Vigilia must

update its database to include a record of the device’s MAC

address and type. To prevent MAC address spoofing or

sniffing attacks from circumventing Vigilia’s access control,

Vigilia assigns a unique pre-shared key (PSK) to each

device. The Vigilia router ties each unique PSK to a specific

device MAC address. Note that while some Android and

iOS devices implement MAC randomization, it is used only

when probing for wireless networks. Thus, our approach is

compatible with modern smart phones. Finally, the installer

maps the device to a specific driver.

The Vigilia installer also manages the addition of new

smart home applications. Installing a new smart home ap-

plication requires specifying the device instances that the

smart home application can control. For each type of abstract

permission the smart home application has requested, the

Vigilia installer presents the list of devices that could provide

those capabilities. The user then selects the subset of devices

she wishes the application to use. For relations, the user

specifies the pairs that comprise the relation (e.g., that a

moisture sensor is close to a given sprinkler head).

Enforcement: Vigilia implements its security model by

combining a range of known techniques. It begins with a

modified wireless router based on LEDE—now merged with

OpenWrt [53]. Many commercially available routers are

built using a similar core code base, so it should be relatively

straightforward to modify existing routers to implement the

necessary functionality. The Vigilia router allows wireless

devices on the same wireless network to have different PSKs.

This allows the router to prevent both MAC spoofing and

sniffing attacks. The effect is that Vigilia can trust the MAC

address of a device and that the wireless communications

between the router and other devices are secure. Vigilia then

uses firewall rules to prevent IP spoofing so that it can trust

IP addresses.

Compute nodes can run more than one computation and

these computations may have different permissions. Vigilia

assigns different ports to different computations on the same

node so that other devices can identify a communication’s

source. Vigilia sandboxes client code using TOMOYO Linux

to ensure that client processes cannot fake port numbers.

TOMOYO Linux also ensures that processes do not access

the files of other processes.

Vigilia implements concrete permission checks by trans-

lating each access permission into a corresponding firewall

rule. Vigilia’s default policy is to block communications—

e.g., unused smart home devices are not allowed to commu-

nicate with anything.

So far we have only discussed restricting network ac-

cesses. However, devices may have many features (e.g., read

temperature and set temperature), and it is important to

restrict accesses to only the necessary features. To support

restrictive feature access, Vigilia employs a capability-based

RMI—device features are often exposed as API methods in

the device’s driver class and thus accessing device features is

often done through remote invocations on the corresponding

methods. A capability in Vigilia is a device feature that

consists of a set of methods from its corresponding class.

A component can declare multiple capabilities and the

capabilities can contain overlapping methods.

Components declare the capabilities they require from

other components. The RMI compiler uses these policy files

to generate stubs and skeletons that only provide access

to the declared capabilities. Although Vigilia’s security

guarantees for capabilities are enforced dynamically, this

code generation strategy enables the existing C++ or Java

compiler to statically check that a component does not





addresses are locked to the specific assigned IP address—

any spoofed traffic is dropped.

Vigilia uses an Android app to configure new devices on

the network. The app generates a new PSK and sends the

PSK to the router using ssh. The router then changes the

default password for the network to this PSK to allow the

new device to join the network. It then detects the MAC

address of the new device, adds the MAC address-PSK pair

to its database, and reverts to the default PSK.

The shared group key, which is used for broadcasting mes-

sages, can also be misused by attackers. Vigilia addresses

this issue by assigning a unique randomized group key to

each device (the router then unicasts group packets) and

combining this with proxy ARP [55]. Note that while these

options are present in the hostapd code, they do not work

and required us to fix them.

Application Sandboxing: Vigilia can run multiple ap-

plications on the same host. This brings the possibility that a

malicious application can masquerade as another application

on the same host by stealing the other application’s port.

Alternatively, a malicious application might try to access

or modify files that are owned by another application. To

prevent these attacks, Vigilia sandboxes applications using

TOMOYO Linux [65]—components are restricted to their

own ports and files.

Zigbee Support: An issue with SmartThings is that any

driver that obtains the Zigbee address of any Zigbee device

can send commands to it [20]. The problem is that device

drivers explicitly build low-level Zigbee packets. These

packets include the destination address for the commands

and the address where responses should be sent. Thus,

SmartThings trusts that device drivers are not malicious.

Malicious device drivers can easily communicate with any

Zigbee device whose address they have.

Vigilia guarantees that device drivers cannot interact with

the wrong Zigbee devices. Vigilia’s Zigbee support consists

of four components: (1) language support for communicating

Zigbee addresses to device drivers, (2) language support to

ensure that honest device drivers do not manually produce

Zigbee address objects, (3) a Zigbee abstraction that sepa-

rates the specification of addresses from device commands,

and (4) a Zigbee firewall that verifies that the given device

driver has permission to communicate with the specific

Zigbee device.

At the language level, Vigilia uses the same basic set-

based abstraction that it uses for both RMI and IP addresses

to check for permission bugs in Zigbee accesses. It then

enforces these properties using runtime permission checks

in the Zigbee gateway. The Zigbee gateway checks are

configured automatically by the Vigilia master to implement

the permissions granted by the end user. These checks use

the source port and IP address to verify that a given Zigbee

device driver has been granted permission to communicate

with the specific Zigbee device address.

Table I
LINES OF CODE IN VIGILIA APPLICATIONS.

Application Application Driver Library Android
LOC LOC LOC LOC

Irrigation 4,075 2,975 401,843 208
Lights 1,683 3,456 401,843 N/A
Music 1,237 2,434 25,254 641
Home Security 2,299 4,177 401,843 187

Some Zigbee requests can leak information about other

devices or configure a Zigbee device to interact with other

devices. Thus the Zigbee gateway limits the types of mes-

sages a device driver can send to prevent the device driver

from directly performing commands such as device discov-

ery. The Zigbee gateway also filters incoming messages to

ensure that device drivers only receive messages about the

relevant device.

Incoming messages are often reports that are generated

by a network node. For a node to receive information

from another network node it must tell that node to send

reports using a ZDO bind command. The Zigbee gateway

remembers which driver performed a ZDO bind command,

and to which node and cluster. When a report arrives from

a Zigbee node, the gateway consults a table to determine

which driver should receive it.

VII. EVALUATION

We deployed Vigilia on a test bed that consists of the

following devices: 2 Raspberry Pi 2 compute nodes, a

Google Nexus 5X smartphone, a Netgear Nighthawk R7800

wireless router, 2 LIFX Color 1000 bulbs, 4 Amcrest IP2M-

841 ProHD 1080P cameras, a XBee S2C Zigbee module

attached to a Raspberry Pi 1 (Zigbee gateway), a Spruce

soil moisture Zigbee sensor, a Blossom sprinkler controller,

2 iHome iWS2 AirPlay speakers, a D-Link DCH-S220 siren,

3 Samsung SmartThings Zigbee sensors (motion, water-leak,

and multi-purpose), and a Kwikset SmartCode 910 Zigbee

lock. We have made the implementation of Vigilia publicly

available at http://plrg.eecs.uci.edu/vigilia/.

Table I presents the lines of code for our applications.

Our test bed is built in a smart home lab environment.

Figure 7 shows the hardware setup in the lab.

A. Applications

We implemented four applications on our test bed. Table II

presents the summary of these applications.

Irrigation: The irrigation application optimizes water-

ing to conserve water. It uses the Spruce moisture sensor to

measure soil moisture. The system makes use of weather

forecasts to determine the expected precipitation. When

people walk on a lawn, they stress the lawn and thus it

requires more water [2], [29]. It uses cameras to monitor

lawn usage and thus whether it requires extra water. The

Spruce moisture sensor uses Zigbee to communicate; we



Table II
SUMMARY OF VIGILIA APPLICATIONS.

Application Smart Home Devices Security Properties

Irrigation 1 Spruce soil moisture sensor
1 Blossom sprinkler controller
1 Amcrest camera
1 Google smartphone

This benchmark uses the device drivers for camera, Spruce moisture sensor, and
sprinkler controller. It also includes a Zigbee gateway that relays messages to the Spruce
sensor. Vigilia generates firewall rules that only allow the following communication:
(1) the application can communicate with the drivers, phone, and the weather forecast
website and (2) each device driver can communicate with its respective device. Each
communication channel is isolated from the others and from all outside devices by (1)
the compute node firewall and (2) the router firewall. The runtime system sends filtering
rules also to the Zigbee gateway, ensuring that the Spruce driver can only communicate
with the Spruce sensor.

Lights 2 LIFX light bulbs
2 Amcrest cameras

This benchmark uses the device drivers for camera and light bulb. Vigilia generates
firewall rules that only allow the following communication: (1) the application can
communicate with the device drivers and (2) each device driver can communicate with
its respective device (i.e., light bulb or camera). Each communication channel is isolated
in a way similar to Irrigation.

Music 2 iHome speakers
1 Google smartphone

This benchmark uses a phone app and two speaker drivers. Vigilia generates firewall
rules that only allow the following communication: (1) the main music application can
communicate with the speaker drivers and the phone app, and (2) each of the device
drivers can communicate with its respective speaker. Each communication channel is
isolated in a similar manner.

Home Security 3 Samsung SmartThings sensors
1 Kwikset door lock
1 Amcrest camera
1 D-Link siren
1 Google smartphone

This benchmark uses the device drivers for camera, siren, door lock, and SmartThings
sensors. Vigilia generates firewall rules that only allow the following communication:
(1) the main home security application can communicate with it device drivers and the
cloud, and (2) each device driver can communicate with its respective device. Each
communication channel is isolated in a similar manner.

Table III
ATTACKS PERFORMED ON DEVICES.

No. Attack Application Detail

1. Sprinkler attack Irrigation A rogue program that controls the sprinkler (i.e., turn on valves, reconfigure wireless connectivity,
and update the firmware based on a non-documented, non-secured RESTful API to port 80 [6]).

2. Light bulb attack Lights A rogue program that issues commands to turn the light on and off (port 56700).

3. Speaker attack Music A rogue program that sends and plays music file on the speaker (port 80).

4. Camera attack Home Security A HTTP URL is used to view the main/sub stream via a web browser (port 80).

5. Siren attack Home Security A rogue program that launches a brute-force attack to guess the PIN code of the siren; an attacker
can use this PIN code to perform a valid authentication (port 80).

6. Deauth. attacks All A jammer is used to deauthenticate a specific device (i.e., sprinkler, light bulb, speaker, camera, or
siren) from its original access point (AP) to let it join a malicious AP with the same SSID and
PSK as the ones used for the actual AP. Thereafter, the device is attacked using the attack for the
specific device (i.e., attack 1, 2, 3, 4, or 5).

Figure 7. Vigilia hardware setup.

have implemented a driver for this sensor that uses the sensor

to monitor soil moisture. An Amcrest camera monitors the

usage of the lawn to adjust the soil moisture target. An

Android app provides the user interface. Finally, a Blossom

sprinkler controller actuates the sprinklers.

Lights: The light application attempts to save energy

by turning lights off in unoccupied spaces, and to improve

sleep by adjusting brightness and color temperature to match

the sun’s color [32], [28], [9]. The application uses cameras

combined with image processing to detect people. We use

two Amcrest cameras to monitor rooms and control the two

LIFX light bulbs.

Music: The music application tracks people using

WiFi-based indoor localization of their cell phone and plays

music from the closest speakers. An Android phone is

used to implement localization and play music through two

iHome speakers.

Home Security: The home security application is mod-

eled after commercial home security products. Such applica-

tions usually consist of multiple sensors that can detect in-



Table IV
VIGILIA COMPARISON WITH OTHER SYSTEMS.

Attack Normal IoTSec Vigilia

Sprinkler cont. attack X X ×

Light bulb attack X X ×

Speaker attack X × ×

Camera attack X X ×

Siren attack X × ×

Deauthentication + sprinkler cont. attack N/A N/A ×

Deauthentication + light bulb attack N/A N/A ×

Deauthentication + speaker attack N/A X ×

Deauthentication + camera attack N/A N/A ×

Deauthentication + siren attack N/A X ×

X= successful attack × = thwarted attack

trusions/anomalies and sound an alarm. Our test bed uses an

Amcrest camera, three Samsung SmartThings sensors (i.e.,

motion, water-leak, and multi-purpose sensors), a Kwikset

door lock, and a D-Link siren as the alarm. Sensor and door

lock drivers communicate with the three sensors and the

door lock through the Zigbee gateway. Finally, an Android

app implements a UI through the secure cloud (§IV).

B. Comparisons

We next compare Vigilia with existing commercial (Nor-

ton Core [16] and Bitdefender BOX 2 [15]) and research

systems (HanGuard [10] and IoTSec [62]).

Attacks: We designed a set of direct attacks, under our

threat model (Section II), against our smart home devices.

The sprinkler, speaker, camera, and siren communicate

through port 80 using the HTTP protocol. The speaker also

uses other ports as it communicates using the AirPlay proto-

col [34]. The sprinkler particularly has a known vulnerability

that can be exploited through a non-documented and non-

secured RESTful API [6].

The light bulb communicates through port 56700, through

which all LIFX bulbs listen [39]. The deauthentication attack

is a more sophisticated attack that we use in combination

with the first five attacks that directly target the devices. This

attack deauthenticates a device, and makes it leave its router

to join a malicious router that has the same SSID and PSK.

When the device joins the other router, we can forcefully

launch a direct attack to the device. Table III summarizes

all of them.

For every system that we evaluated, we connected the

smart home devices to the system and we performed the

direct attacks. When a direct attack failed, we performed

a combination attack. We first deauthenticated the device,

let it join the malicious router that we have prepared, and

performed the direct attack. Table IV summarizes the results.

We also performed the attacks on a normal router to establish

a baseline. The normal router does not have any of the

security properties that the Vigilia router has.

SmartThings: We implemented several previously

known attacks against the SmartThings hub. In our first

attack, we modified a device handler to subscribe to all

LAN traffic. When we installed this device handler, there

was no notification that it might access all SSDP network

communications. We then ran the handler and could observe

all SSDP traffic to the hub

We next modified the service manager component of the

Wemo Switch driver to change the IP address and port of a

device after installation. This allowed us to control arbitrary

devices on the LAN. Since third party drivers are commonly

used to control smart home devices under SmartThings (e.g.,

the only driver for Google Nest is a third party driver written

by a hobbyist), this is a significant threat. This hack can be

used to communicate with any device on the LAN.

We then implemented the same type of attack on Zig-

bee drivers and have discovered that Zigbee drivers can

contact arbitrary Zigbee devices and send arbitrary Zigbee

commands [20].

None of these attacks are possible under Vigilia. Vigilia

blocks all network traffic by default and thus components

can only access network traffic that they have been explicitly

configured to access and that was explicitly intended for the

component. Drivers under Vigilia are subject to the fine-

grained access controls for both the TCP/IP and Zigbee

networks and thus can only access the devices they were

explicitly configured for. Moreover, our Zigbee framework

prevents issuing commands that would cause a Zigbee device

to interfere with other Zigbee devices.

Finally, as part of our general attacks reported later in this

section, we sent commands directly to smart home devices.

SmartThings does not block any such attacks. Vigilia blocks

all such attacks.

Commercial Systems: We selected Norton Core and

Bitdefender BOX 2, which are two leading secure routers

that protect smart home IoT devices [16], [50], [15], [51].

They both use machine learning to learn the normal behavior

of smart home devices. Their system compares device be-

havior against their database that contains information about

vulnerabilities, attacks, viruses, malicious activities, etc., and

warns users when it detects anomalies.

We first connected our devices to Norton Core and Bit-

defender BOX 2. Next, we performed direct attacks against

the smart home devices. The attacks were successful and

thus we categorize these systems under the normal router

category in our results.

Further inspection revealed that these systems operate

under a different threat model—they only defend against

attacks that come from outside. A device inside the local

network is considered safe and trusted—it is allowed to

generate any traffic to any of the other local devices. Hence,

they do not defend against our attacks that come from

compromised local devices.

Research Systems: For research systems, we evaluated

HanGuard [10] and IoTSec [62]. To the best of our knowl-

edge, these systems are the closest to Vigilia in terms of the

threat model.



HanGuard uses SDN-like techniques to learn the nor-

mal traffic between smartphone apps and their respective

smart home devices. A Monitor app runs on the phone

to identify any attacks and inform the router through the

system’s control plane. The router then enforces policies

in the data plane after verifying the party that attempts to

access the device. Unfortunately, we could not obtain the

implementation of HanGuard. Thus, we could not compare

HanGuard with Vigilia. However, the paper [10] implies

that HanGuard would leave IoT devices vulnerable to the

combination attacks that can be thwarted by Vigilia.

IoTSec has two phases: profiling and deployment. During

profiling, it attempts to learn the normal traffic of devices,

e.g., legitimate source and destination IP addresses, port

numbers, protocols, etc. Then, a set of firewall rules will

be generated and can be deployed on the router. Similarly

to Vigilia, IoTSec reduces the attack surface with firewall

while trying to maintain full functionality of devices.

To evaluate IoTSec, we connected our devices to a router

running the IoTSec profiler. We then executed the four Vig-

ilia applications, but turned off Vigilia’s firewall protection.

The IoTSec profiler learned the normal traffic of the four

applications and generated a set of firewall rules for all

devices. We deployed the firewall rules on the router and

restarted the applications.

A key weakness of IoTSec is that it relies entirely on

profiling. For most of our devices, this approach worked

because they always use the same IP address, port numbers,

and protocols. However, the iHome speaker randomly selects

a port number and the generated firewall rules disrupted

the speaker’s operation—these rules assume devices always

use the same port numbers. In addition, profiling may not

exhibit all behaviors of a system. For example, during

profiling, we did not trigger the siren to let it go off—

deliberately triggering the home alarm to enable the home

security system is not a normal behavior. The profiler did

not learn the siren’s traffic and thus the generated firewall

rules disabled the siren.

We performed direct attacks on the devices. The attacks

against the sprinkler, light bulb, and camera were success-

ful because the generated firewall rules allowed them to

communicate through their respective port numbers. During

profiling, IoTSec does not learn the source IP addresses—it

assumes that devices are allowed to communicate through

their respective ports regardless of the source IP addresses.

Hence, the firewall rules are not fine-grained enough to block

communications from illegal sources.

The attacks against the speaker and siren failed because

the incomplete firewall rules meant that they did not function

at all. We then performed the deauthentication attack to

both devices. After they joined our malicious router, we

successfully attacked them.

Vigilia: We performed the same attacks against the

devices under Vigilia. We connected every device using a

Table V
STATISTICS OF ACCESS ATTEMPTS FOR THE PUBLIC IP EXPERIMENT;

‘A’ IS A PLACEHOLDER FOR 128.200.150 AND ‘B’ IS FOR

calplug.uci.edu; COLUMN DS REPORTS THE NUMBER OF DISTINCT

SOURCES; TCP AND UDP REPORTS NUMBERS IN THE FORM OF X/Y
WHERE X AND Y REPRESENT THE NUMBERS OF TOTAL AND DISTINCT

ADDRESSES, RESPECTIVELY.

IP Domain Total DS TCP UDP ICMP

A.130 iot1.B 2,944 1,411 1,992 / 340 334 / 60 218
A.131 iot2.B 2,791 1,451 2,039 / 343 256 / 84 69
A.132 iot3.B 3,255 1,405 1,947 / 350 203 / 62 693
A.133 iot4.B 2,841 1,364 1,934 / 344 219 / 73 271
A.134 iot5.B 2,769 1,422 2,043 / 349 233 / 62 82
A.135 iot6.B 2,792 1,416 2,024 / 353 281 / 65 69
A.136 iot7.B 3,284 1,443 2,106 / 342 276 / 64 496
A.137 iot8.B 3,006 1,507 2,084 / 316 272 / 88 246
A.138 iot9.B 3,000 1,433 2,028 / 316 353 / 72 231
A.139 iot10.B 2,620 1,370 1,862 / 283 244 / 62 169
A.140 iot11.B 2,692 1,419 1,983 / 316 258 / 69 66
A.141 iot12.B 2,709 1,429 2,018 / 267 262 / 69 93
A.142 iot13.B 3,582 1,397 2,042 / 352 287 / 63 838
A.143 iot14.B 2 2 0 / 0 2 / 2 0
A.144 iot15.B 3 2 0 / 0 3 / 2 0
A.145 iot16.B 6 2 0 / 0 6 / 1 0

Total 38,296

Table VI
STATISTICS OF PUBLIC IP EXPERIMENT ON CAMERAS; ‘A’ IS FOR

128.200.150; ATT, SRC, PKT REPRESENT THE NUMBER OF ACCESS

ATTEMPTS, SOURCES, AND NETWORK PACKETS, RESPECTIVELY; U/T

STANDS FOR UDP/TCP.

IP With Vigilia
(Att / Src / Pkt)

Ports
(U/T)

With pwd only
(Att / Src / Pkt)

Ports
(U/T)

A.134 106 / 96 / 114 6 / 23 5,337 / 117 / 9,658 39 / 48
A.135 111 / 100 / 115 7 / 23 20,172 / 124 / 40,998 47 / 46
A.136 206 / 97 / 208 6 / 22 1,201 / 98 / 2,039 19 / 43
A.137 128 / 109 / 135 7 / 21 4,520 / 119 / 8,889 17 / 51

unique PSK to Vigilia’s router. We ran the four applications

simultaneously and attacked them.

Under the protection of Vigilia’s firewall and sandboxing

mechanisms, all of the applications and devices were fully

functional, and all of the attacks were successfully thwarted.

The direct device attacks were blocked by the deployed

firewall rules on the router and the compute nodes. The

deauthentication attack also failed as none of the devices

could join the malicious router. Even though the malicious

router was configured with the same SSID and PSK as the

Vigilia router, the devices did not use the router’s default

PSK—every device was connected to the Vigilia router using

a unique PSK.

C. Public IP

To further evaluate Vigilia, we conducted another ex-

periment, in which we assigned public IP addresses to

our devices. While other secure routers generally claim to

protect smart home IoT devices when they are connected

to a local network behind Network Address Translation

(NAT), we let our devices be exposed to the open Internet.

For this experiment, we assigned a public IP address for



every device, ran the four applications, and let Vigilia set

up firewall rules on the router. We ran this experiment for

approximately 10 days.

Table V summarizes the results of the experiment. The

table reports, for a device, the IP address, its domain name,

the total number of access attempts for this device, the

number of distinct sources these attempts came from, the

number of total and distinct TCP attempts, the number of

total and distinct UDP attempts, as well as the number of

ICMP packets. The 16 public IP addresses generated 38,296

access attempts—approximately 3,629 access attempts per

day and 240 access attempts per day per device.

All the attempts were thwarted by the Vigilia firewall rules

set up on the router. No device responded to any of the

sources, except for the ICMP packets. The network trace

suggests that most of the access attempts were either ICMP

ping or TCP SYN/ACK port scanning [70], which are the

two approaches attackers commonly use to “test the waters”.

Since our devices only replied to ICMP pings, there were

no further packets from more sophisticated attacks.

Real Attacks on Cameras: We conducted an additional

experiment with our Amcrest cameras and exposed them

to real attacks. This experiment was done under three

scenarios: 1) cameras were protected under Vigilia, 2) cam-

eras were protected with passwords, and 3) cameras were

unprotected. Each scenario lasted for 14 hours.

Table VI summarizes the results of the experiment for the

first two scenarios. In the first scenario, the first camera with

address 128.200.150.134 received 106 access attempts

from 96 distinct sources with 114 packets of total traffic

under Vigilia’s protection—the attempts targeted 6 distinct

UDP ports and 23 distinct TCP ports, and were all thwarted.

In the second scenario, the same camera received many more

access attempts. Although the camera had not been com-

promised, it could have been had we extended the duration.

This is especially the case when people use generic/default

passwords for their cameras, as shown in a study on the

Mirai botnet attack [3]—there was even a ... Mirai infection

on Amcrest cameras despite strong passwords [24].

In the third scenario, it took just 15 minutes, for all

of the four cameras to be hacked and crippled—the user

interface was completely broken although it was still able

to stream out video. Each attack session for each camera

just took around 172 - 362 packet exchanges between each

camera and the attacker. The network trace in the log file

suggests that the attackers used a technique called XML-

RPC attack [59], which typically brings down web services

by executing remote procedure call (RPC) commands via

the HTTP protocol.

D. Performance Microbenchmarks

Vigilia’s primary enforcement is implemented by firewall

rules. The other components are not on the hot paths and

should add minimal overhead. This subsection evaluated the

Table VII
VIGILIA MICROBENCHMARK RESULTS.

Node-to-Node Over-
head

Node-to-LAN Over-
head

Normal 2.91 MB/s N/A 5.64 MB/s N/A
Hairpin 2.78 MB/s 4.5% 5.62 MB/s 0.3%
Hairpin + Policies 2.75 MB/s 5.5% 5.62 MB/s 0.3%

overhead of Vigilia’s routing policies on network throughput.

We measured the network bandwidth under three differ-

ent router configurations: normal mode, hairpin mode, and

hairpin mode with policies. We performed each of these

measurements under two different setups: (1) a node-to-node

bandwidth measurement using the Apache HTTP server on

a Raspberry Pi 2 and (2) a node-to-LAN bandwidth mea-

surement using the Apache HTTP server on an Intel Core i7-

3770 CPU 3.40GHz machine running Ubuntu. We ran wget

on another Raspberry Pi 2 to retrieve a 30 MB file from both

the Raspberry Pi 2 and the Ubuntu machine. All equipment

was placed in a Faraday cage to limit interference. We report

average bandwidth over 20 runs.

Table VII reports the average bandwidths. Under the node-

to-node scenario, hairpin mode introduces a 4.5% overhead

since it forces traffic to exit the driver and go through the

kernel firewall. Under the node-to-LAN scenario, the lower

overhead is not surprising as node-to-LAN traffic already

exits the driver before going through the firewall. The

firewall policies introduce almost negligible overhead for

both setups. Node-to-node results show lower bandwidths

as communication must take two hops on the same WiFi

channel. Overall, the overheads are relatively small.

VIII. DISCUSSION

Vigilia Techniques: The techniques used in Vigilia, i.e.,

static checking, router policy enforcement, process sandbox-

ing, and capability-based RMI (§V) along with WiFi network

filtering and Zigbee firewall (§VI) could also be deployed

in existing systems, e.g., SmartThings. The major issue with

directly implementing our approach on SmartThings is that

the SmartApps run on their cloud servers and none of the

source code for their software infrastructure for running

SmartApps is available. Nevertheless, assuming that we

had access to their software infrastructure and extended

it to execute applications and device drivers on the local

network, it would be straightforward to deploy the static

checking, router policy enforcement, process sandboxing,

and capability-based RMI. The techniques to secure the

WiFi network against snooping, ARP-spoofing, and MAC-

spoofing could be applied directly to the router, while the

Zigbee firewall could also be integrated fairly easily into the

smart hub.



IX. RELATED WORK

Network-based policy checking is not a new idea and it

has been studied in the software-defined networking (SDN)

community [26], [8], [7]. For example, Ethane [7] requires

each application to specify a manifest of its required com-

munication and then checks packets against security rules

and installs forwarding rules as required. While Ethane

is applicable in our setting, it is designed primarily for

enterprise networks that have a large number of switches;

it requires a sophisticated controller that performs authen-

tication, registration, and checking. It also requires expert

administrators to develop routing policies—a task that is be-

yond the abilities of most end users. Moreover, IoT devices

typically communicate via WiFi and often do not support

the enterprise security modes. Thus, malicious devices can

masquerade as other devices to bypass the SDN protections.

IoT Security: Denning et al. [11] identified emergent

threats to smart homes due to the use of IoT devices. Recent

Work [20] discusses scenarios in which hackers can weaken

home security through compromising these devices. A study

by Ur et al. [66] on the access control of the Philips Hue

lighting and the Kwikset door lock found that each system

provides a siloed access control system that fails to enable

essential use cases.

Many other projects have made a similar observation

that IoT devices have highly structured communication pat-

terns. The Bark policy language uses manually created poli-

cies [33]. This policy language provides five types, i.e., who,

what, where, when, and how to capture the high level infor-

mation (e.g., devices, apps, types of service, etc.) needed

to construct network level policies. A similar approach

uses manually created policies [4], while other approaches

propose learning policies [74], [46]. These approaches suffer

from similar challenges to IoTSec, in that they can generate

overly relaxed policies that allow attacks or overly restrictive

policies that break applications. Moreover, compromised

devices can easily bypass the policies by masquerading as

other devices. For simple IoT control rules of the form used

by IFTTT, automated analysis can generate rich policies that

only grant permissions under specific criteria (e.g., one can

only turn on the heat if it is cold) [22].

Bluetooth devices face similar issues to Zigbee devices

regarding access control. Previous work [38] has explored

access control for Bluetooth devices. Low-level protocol

differences mean that the solution for Bluetooth devices does

not solve the problem for Zigbee.

There are two main categories of work in current smart

home security research, focused primarily on devices and

protocols, respectively [23], [30], [52]. On protocols, studies

found various flaws in the Zigbee and Z-Wave devices [25],

[41], [20], [68].

Much work has been done to limit the privilege of

networked systems, but this is difficult to achieve due to

the lack of programming language and system support.

Felt et al. [19] found that more than 300 Android apps

were overprivileged. Fernandes et al. [20] found that IoT

devices are also overprivileged due to the framework design

itself. HomeOS supports smart home devices using a PC-

like abstraction [13]. HomeOS only provides support for

placing restrictions on modules running on the PC—other

devices on the network are free to attack smart home devices.

Vigilia provides much stronger security guarantees—it can

defend against attacks from other smart home applications,

device drivers, and arbitrary devices on the home network.

FlowFence [21] provides security by requiring consumers of

sensitive to declare their data flow patterns. ContexIoT [36]

is a context-based permission system provides contextual

integrity by supporting fine-grained context identification for

sensitive actions.

Capability-based Object Model: Capability-based ob-

ject models are used to control object accesses according to

a certain set of capabilities. This term was coined in 1959 by

Dennis et al. [12]. Miller et al. [47] compared ACL with the

capability-based model. In [44], [43], [57], [45], capability-

based models have been used in different contexts. Unix-like

operating systems, e.g., SELinux [42], have implemented

ACL and MAC, which are orthogonal to capability-based

object model.

Routing Policy Derivation: Researchers have developed

tool kits for managing firewalls. The Firmato [5] toolkit al-

lows administrators to specify rules in terms of a higher-level

model. This model is specified by the administrator and thus

has no direct relationship to code—errors in specifying the

model can either open the system to attacks or block desired

communications. It is likely to be unreasonable to expect end

users to develop such models for their home networks. There

also exists work on information flow systems [48], [49], [64],

[18], [54], [75], [76], [40], most of which is orthogonal.

X. CONCLUSION

We present an approach for building secure systems out

of insecure components in Vigilia. Our approach moves the

burden of securing the system from the device manufacturers

to the platform, reducing concerns about the long-term

availability of security patches.

We have implemented 4 applications in Vigilia using

commercially available IoT devices. The intended deploy-

ment of the IoT devices used by each application had

least one vulnerability. Vigilia successfully defended all our

applications against all attacks.

XI. ACKNOWLEDGMENT

We would like to thank our anonymous reviewers for

their thorough comments and especially our shepherd Klara

Nahrstedt, who has helped us improve the paper’s readabil-

ity. We would like to also thank Changwoo Lee, Jiawei Gu,

Yuting Tan, and Jiman Jeong, who helped develop the Zigbee

device drivers; Hyeongtag Chi, Bowon Ko, Kevin Cong



Truong, and Brian Truong, who helped develop the phone

application; Dohyun Kim and Janghoi Koo, who helped with

a benchmark application.

This project was partly supported by the National Sci-

ence Foundation under grants CCF-1319786, CNS-1613023,

CNS-1703598, CNS-1763172, OAC-1740210 and by the

Office of Naval Research under grants N00014-16-1-2913

and N00014-18-1-2037.

REFERENCES

[1] Samsung smart fridge leaves Gmail logins open to at-
tack. http://www.theregister.co.uk/2015/08/24/smart fridge
security fubar/, August 2015.

[2] Lawn watering tips - best times & schedules.
http://www.scotts.com/smg/goART3/Howto/lawn-watering-
tips/33800022/12400007/32000006/18800019, April 2016.

[3] M. Antonakakis, T. April, M. Bailey, M. Bernhard,
E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman,
L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,
J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas,
and Y. Zhou. Understanding the mirai botnet. In Proceedings
of the 26th USENIX Security Symposium, 2017.

[4] D. Barrera, I. Molloy, and H. Huang. Idiot: Securing the
internet of things like it’s 1994. CoRR, abs/1712.03623, 2017.

[5] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: A
novel firewall management toolkit. ACM Transactions on
Computer Systems, 22(4):381–420, November 2004.

[6] M. Bergin. Unplugging an IoT device from the cloud.
https://blog.korelogic.com/blog/2015/12/11/unplugging iot
from the cloud, December 2015.

[7] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking control of the enterprise.
SIGCOMM Comput. Commun. Rev., 37(4):1–12, Aug. 2007.

[8] M. Casado, T. Garfinkel, M. Freedman, A. Akella, D. Boneh,
N. McKeowon, and S. Shenker. SANE: A Protection Ar-
chitecture for Enterprise Networks. In Proc. Usenix Security
Symposium, August 2006.

[9] A.-M. Chang, F. A. J. L. Scheer, and C. A. Czeisler. The
human circadian system adapts to prior photic history. The
Journal of Physiology, 589(5):1095–1102, March 2011.

[10] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. Gunter,
X. Zhou, and M. Grace. Guardian of the HAN: Thwarting
mobile attacks on smart-home devices using OS-level situa-
tion awareness. https://arxiv.org/abs/1703.01537, 2017.

[11] T. Denning, T. Kohno, and H. M. Levy. Computer security
and the modern home. Commun. ACM, 56(1):94–103, Jan.
2013.

[12] J. B. Dennis and E. C. Van Horn. Programming semantics for
multiprogrammed computations. Commun. ACM, 9(3):143–
155, Mar. 1966.

[13] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee,
S. Saroiu, and P. Bahl. An operating system for the home.
In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, 2012.

[14] L. DROLEZ. Wanscam JW0004 IP Webcam hack-
ing. http://www.drolez.com/blog/?category=Hardware&post=
jw0004-webcam, July 2015.

[15] M. Eddy, V. Song, and J. R. Delaney. Bitdefender box
2. https://www.pcmag.com/review/357433/bitdefender-box-2,
November 2017.

[16] M. Eddy, V. Song, and J. R. Delaney. Symantec nor-
ton core router. https://www.pcmag.com/review/355417/
symantec-norton-core-router, September 2017.

[17] H. P. Enterprise. Internet of things research study: 2015
report. http://h20195.www2.hp.com/V2/GetDocument.aspx?
docname=4AA5-4759ENW&cc=us&lc=en, 2015.

[18] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner,
F. Roesner, K. Koscher, P. Barros, R. Bhoraskar, S. Han,
P. Vines, and E. X. Wu. Collaborative verification of infor-
mation flow for a high-assurance app store. In Proceedings of
the 2014 ACM Conference on Computer and Communications
Security, 2014.

[19] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In Proceedings of the 18th
ACM Conference on Computer and Communications Security,
Chicago, IL, USA, October 2011 (CCS ’11).

[20] E. Fernandes, J. Jung, and A. Prakash. Security analysis of
emerging smart home applications. In 2016 IEEE Symposium
on Security and Privacy (SP), Oakland, CA, USA, May 2016
(Oakload ’16), pages 636–654, May 2016.

[21] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato,
M. Conti, and A. Prakash. FlowFence: Practical data protec-
tion for emerging IoT application frameworks. In USENIX
Security, pages 531–548, 2016.

[22] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decen-
tralized Action Integrity for Trigger-Action IoT Platforms. In
22nd Network and Distributed Security Symposium (NDSS
2018), Feb. 2018.

[23] D. Fisher. Pair of bugs open honeywell home controllers
up to easy hacks. https://threatpost.com/pair-of-bugs-open-
honeywell-home-controllers-up-to-easy-hacks/, 2015.

[24] A. Forum. Mirai infection. https://amcrest.com/forum/
technical-discussion-f3/mirai-infection-t3686.html, October
2017.

[25] B. Fouladi and S. Ghanoun. Honey, i’m home!!, hacking
zwave home automation system. In Black Hat USA, 2013.

[26] O. N. Foundation. Software-defined networking (sdn) def-
inition. https://www.opennetworking.org/sdn-resources/sdn-
definition, 2017.

[27] T. A. S. Foundation. The apache groovy programming
language. http://groovy-lang.org/, 2003-2018.



[28] J. J. Gooley, K. Chamberlain, K. A. Smith, S. B. S. Khalsa,
S. M. W. Rajaratnam, E. V. Reen, J. M. Zeitzer, C. A. Czeisler,
and S. W. Lockley. Exposure to room light before bedtime
suppresses melatonin onset and shortens melatonin duration
in humans. Journal of Clinical Endocrinology & Metabolism,
96(3):E463–E472, March 2011.

[29] J. Hartin, P. M. Geisel, and C. L. Unruh. Lawn watering
guide for california. Technical Report ANR 8044, Uni-
versity of California – Agriculture and Natural Resources,
http://anrcatalog.ucanr.edu/pdf/8044.pdf, 2001.

[30] A. Hesseldahl. A hackers-eye view of the internet of
things. http://recode.net/2015/04/07/a-hackers-eye-view-of-
the-internet-of-things/, 2015.

[31] K. Hill. The half-baked security of our ’Internet Of
Things’. http://www.forbes.com/sites/kashmirhill/2014/05/27/
article-may-scare-you-away-from-internet-of-things/.

[32] D. C. Holzman. What’s in a color? the unique human health
effects of blue light. Environmental Health Perspectives,
118(1):A22–A27, January 2010.

[33] J. Hong, A. Levy, L. Riliskis, and P. Levis. Don’t talk
unless i say so! securing the internet of things with default-
off networking. In 2018 IEEE/ACM Third International
Conference on Internet-of-Things Design and Implementation
(IoTDI), pages 117–128, April 2018.

[34] A. Inc. Airplay. https://developer.apple.com/airplay/, 2018.

[35] IOActive. Belkin WeMo home automation vulner-
abilities. http://www.ioactive.com/pdfs/IOActive Belkin-
advisory-lite.pdf, 2014.

[36] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes,
Z. M. Mao, and A. Prakash. ContexIoT: Towards providing
contextual integrity to appified IoT platforms. In NDSS, 2017.

[37] Security of the Local LAN? https://community.smartthings.
com/t/security-on-the-local-lan/41585, May 2018.

[38] A. Levy, J. Hong, L. Riliskis, P. Levis, and K. Winstein.
Beetle: Flexible Communication for Bluetooth Low Energy.
In Proceedings of the 14th International Conference on
Mobile Systems, Applications and Services (MobiSys), June
2016.

[39] LIFX. Device messages. https://lan.developer.lifx.com/docs/
device-messages, 2018.

[40] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C.
Myers. Fabric: A platform for secure distributed computation
and storage. In Proceedings of the ACM 2009 Symposium on
Operating Systems Principles and Implementation, 2009.

[41] N. Lomas. Critical flaw identified in zigbee smart home
devices. http://techcrunch.com/2015/08/07/critical-flaw-ided-
in-zigbee-smart-home-devices/, 2015.

[42] P. Loscocco and S. Smalley. Integrating flexible support
for security policies into the Linux operating system. In
Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, 2001.

[43] T. Luo and W. Du. Contego: Capability-Based Access
Control for Web Browsers, pages 231–238. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[44] S. Maffeis, J. C. Mitchell, and A. Taly. Object capabilities
and isolation of untrusted web applications. In 31st IEEE
Symposium on Security and Privacy, S&P 2010, 16-19 May
2010, Berleley/Oakland, California, USA, pages 125–140,
2010.

[45] A. Mettler, D. Wagner, and T. Close. Joe-E: A security-
oriented subset of Java. In Network and Distributed Systems
Symposium. Internet Society, 2010.

[46] M. Miettinen, S. Marchal, I. Hafeez, T. Frassetto, N. Asokan,
A. R. Sadeghi, and S. Tarkoma. IoT Sentinel: Automated
device-type identification for security enforcement in IoT.
In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), June 2017.

[47] M. S. Miller, K.-P. Yee, and J. Shapiro. Capability myths
demolished, 2003.

[48] A. C. Myers. JFlow: Practical mostly-static information
flow control. In Proceedings of the 26th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1999.

[49] A. C. Myers and B. Liskov. A decentralized model for
information flow control. In Proceedfings of the 16th ACM
Symposium on Operating Systems Principles, 1997.

[50] B. Nadel. Norton core router review. https://www.tomsguide.
com/us/norton-core-router,review-4827.html, November
2017.

[51] B. Nadel. Bitdefender box (2018) review: Flexible protec-
tion. https://www.tomsguide.com/us/bitdefender-box,review-
3766.html, January 2018.

[52] T. Oluwafemi, T. Kohno, S. Gupta, and S. Patel. Experimen-
tal security analyses of non-networked compact fluorescent
lamps: A case study of home automation security. In
Proceedings of the LASER 2013, Arlington, VA, USA (LASER
2013), pages 13–24. USENIX, 2013.

[53] OpenWrt. https://openwrt.org.

[54] M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins, and M. D.
Ernst. Practical pluggable types for Java. In Proceedings of
the 2008 International Symposium on Software Testing and
Analysis, ISSTA ’08, pages 201–212, New York, NY, USA,
2008. ACM.

[55] Proxy arp. http://www.cisco.com/c/en/us/support/docs/
ip/dynamic-address-allocation-resolution/13718-5.html, Jan-
uary 2008.

[56] Rapid. HACKING IoT: A case study on baby
monitor exposures and vulnerabilities. https:
//www.rapid7.com/docs/Hacking-IoT-A-Case-Study-on-
Baby-Monitor-Exposures-and-Vulnerabilities.pdf, September
2015.



[57] S. Saghafi, K. Fisler, and S. Krishnamurthi. Features and
object capabilities: Reconciling two visions of modularity. In
Proceedings of the 11th Annual International Conference on
Aspect-oriented Software Development, AOSD ’12, pages 25–
34, New York, NY, USA, 2012. ACM.

[58] Samsung SmartCam. https://www.exploitee.rs/index.php/
Samsung SmartCam%E2%80%8B#Fixing Password Reset
.22Pre-Auth.22, August 2014.

[59] J. Schwenn. How to protect wordpress from xml-rpc attacks
on ubuntu 14.04. https://www.digitalocean.com/community/
tutorials/how-to-protect-wordpress-from-xml-rpc-attacks-
on-ubuntu-14-04, February 2016.

[60] S. Shekyan and A. Harutyunyan. To watch or to be
watched: Turning your surveillance camera against you.
https://conference.hitb.org/hitbsecconf2013ams/materials/
D2T1%20-%20Sergey%20Shekyan%20and%20Artem%
20Harutyunyan%20-%20Turning%20Your%20Surveillance%
20Camera%20Against%20You.pdf.

[61] S. SmartThings. Samsung smartthings website. http://www.
smartthings.com, 2018.

[62] D. A. Sorensen, N. Vanggaard, and J. M. Peder-
sen. IoTsec: Automatic profile-based firewall for IoT
devices. http://projekter.aau.dk/projekter/files/260081086/
report print friendly.pdf, June 2017.

[63] Spruce - the smart irrigation controller. http://www.
spruceirrigation.com, April 2016.

[64] A. J. Summers and P. Muller. Freedom before commitment-a
lightweight type system for object initialisation. In Proceed-
ings of the 2011 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages &
Applications, 2011.

[65] Tomoyo linux. https://tomoyo.osdn.jp/index.html.en, April
2017.

[66] B. Ur, J. Jung, and S. Schechter. The current state of
access control for smart devices in homes. In Proceedings of
Workshop on Home Usable Privacy and Security, Newcastle,
UK, July 2013 (HUPS), 2013.

[67] S. H. USA. What is a smart home? https://www.
smarthomeusa.com/smarthome/, 2018.

[68] Veracode. The internet of things: Security research study.
https://www.veracode.com/sites/default/files/Resources/
Whitepapers/internet-of-things-whitepaper.pdf, 2015.

[69] G. Wassermann. ZyXEL NBG-418N, PMG5318-B20A and
P-660HW-T1 routers contain multiple vulnerabilities. http:
//www.kb.cert.org/vuls/id/870744, October 2015.

[70] A. Whitaker and D. Newman. Penetration testing and network
defense: Performing host reconnaissance. http://www.
ciscopress.com/articles/article.asp?p=469623&seqNum=3,
June 2018.

[71] Z. Whittaker. Hackers exploiting ‘serious’ flaw in Netgear
routers. http://www.zdnet.com/article/hackers-exploiting-
serious-flaw-in-netgear-routers/, October 2015.

[72] Wink hub. https://www.exploitee.rs/index.php/Wink Hub%
E2%80%8B%E2%80%8B#Wink Hub .22.2Fvar.2Fwww.
2Fdev detail.php.22 SQLi for root command execution.

[73] K. York. Dyn statement on 10/21/2016 ddos attack. http://dyn.
com/blog/dyn-statement-on-10212016-ddos-attack/, October
2016.

[74] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu. Handling
a trillion (unfixable) flaws on a billion devices: Rethinking
network security for the Internet-of-Things. In Proceedings
of the 14th ACM Workshop on Hot Topics in Networks
(HotNets), 2015.

[75] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In Proceedings
of the 7th USENIX Symposium on Operating Systems Design
and Implementation, 2006.

[76] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing
distributed systems with information flow control. In Proceed-
ings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, 2008.


